

Oregon's Tsunami Program

Jonathan Allan and Althea Rizzo
Oregon Department of Geology and Mineral Industries
Oregon Emergency management

Key Stakeholders

Residents (56,506) and visitors (~2-3 x residents in summer);
 48 coastal communities, 10 ports/harbors.

Challenges: ~300 coastal bridges expected to fail, thousands of landslides…communities will be isolated → 2-week ready!

OEM

- NTHMP emergency management rep., Chair OR Tsunami Advisory Council, responsible for tsunami outreach.
- DOGAMI
 - Program lead, NTHMP science rep., mapping & modeling, evacuation modeling, risk assessments, Oregon tsunami clearinghouse.
- County emergency managers (7);
- Emergency volunteer groups (eg. Nehalem EVC, South Tillamook EVC);
- National Weather Service
 - Alerts and warnings, maintains TsunamiReady program
- Northwest Association of Networked Ocean Observing Systems (NANOOS)
 - maintains NVS Tsunami Evacuation Zones portal (http://nvs.nanoos.org/TsunamiEvac)
 and TsunamiEvac smartphone app
- Oregon State University
 - · Geology (paleoseismology), risk assessments, debris modeling

Our mission...

Primer... Distant Tsunamis

- Arrives ~3 hrs 40 mins hours after an eastern Alaska earthquake (~4 hrs south coast)
- Lower damage and flooding than local tsunamis
- Waves reach ~25 ft @ Tillamook Bay, ~39 ft @ Gold Beach
- National Tsunami Warning System can warn you

- 29 distant events since the mid 1850s;
- 19 = water levels (WLs) < 0.7 ft i.e. small...little to no impact to ports and harbors;
- 5 = water levels between 0.7 2 ft;
- 5 = water levels > 2 ft;
 - 1873 Northern California source (10 ft @ Port Orford)
 - 1946 Unimak Alaska (6 ft @ Clatsop Spit)
 - 1960 Chile (4.9 ft @ Seaside)
 - 1964 Anchorage, Alaska (WLs 8.2 12.1 ft in estuaries), <u>coincided with high tide</u>.
 - 2011 Tohoku, Japan (11 ft @ Port Orford vs.
 0.8 ft @ Astoria), coincided with low tide

Primer... Local Tsunamis

North American Plate Overrides Juan de Fuca Plate Along Cascadia Subduction Zone at a rate of 1.5 inches/year

10,000 year record of deep sea turbidites, subsidence and tsunami inundation in coastal lakes and estuaries

19 = Great earthquakes (> 8.5 Mw)

26 = smaller events (> 7.4, < 8.5 Mw)

Tsunami waves arrive in minutes!

Maps for Preparedness & Planning

Evacuation brochures

Online evacuation zone viewer

Tsunami Inundation Maps

Evacuation modeling... Beat the wave

Inputs

- Road and trail surfaces (paved vs gravel vs sand)
- Tsunami evacuation zone (XXL)
- DEM for slope and distance (lidar)
- Tsunami wave arrival times

Outcomes:

- Ideal evacuation routes
- Minimum evacuation speeds
- Vulnerabilities and mitigation options (primarily infrastructure)
- 4. Socioeconomic analysis (where are the vulnerable populations?)

"Beat The Wave" Products

1. Tsunami wave arrival time map

Detailed map of the first tsunami wave arrival for the entire region

2. Evacuation routes

Detailed information on the most efficient routes to safety (arrows)

3. Evacuation communities

- "flow zones" or "watersheds"
- Zones delineating which safety destination is best for entire town
- These community boundaries will change depending on the scenario (i.e. non-retrofitted bridges out, or adding a vertical evacuation structure)

4. Pedestrian travel speeds

- The <u>MINIMUM</u> walking speed someone must travel in order to reach safety ahead of the first tsunami arrival at the start of their route
- These speeds will change depending on the scenario (i.e. non-retrofitted bridges out, or adding a vertical evacuation structure)

Evacuation modeling benefits... routable roads = improved evacuation route planning

Tsunami Building Damage and Casualty Estimation

Goal: Analyze community exposure to tsunami inundation in order to determine estimates of infrastructure damage and casualty numbers for Clatsop, Tillamook and Lincoln Counties.

M_w 9.0 earthquake, 11 March 2011

Iwaki, Fukushima, Japan

Ofunato, Japan

Process Overview

WHAT'S AT RISK?

WHAT'S THE **HAZARD?**

BUILDINGS

- Usage
- Type

PEOPLE

- How many
- Where
- When (time of day and year)
- Who (Demographics)

EARTHQUAKE

- **Ground Shaking**
- **Ground Failure**

TSUNAMI

- Time of Arrival
- Extent
- Depth
- Momentum Flux

ANALYSIS

v4.2 v4

earthquake model tsunami model

- includes landslides
- includes liquefaction

WHAT'S THE **IMPACT?**

LOSS **ESTIMATES**

- **Buildings**
- Casualties
- Displaced Population
- **Debris**

Natural Hazards

Earthquake Scenario: Cascadia M_W 9.0 Ground Shaking: Site Amplification Ground Deformation: Liquefaction and Landslide Susceptibility

Tsunami Scenario (3 scenarios: M1, L1, XXL)

Building Damage Model: Momentum Flux and Flow Depth **Casualty model (Injuries + Fatalities):** Flow Depth Considerations: community preparedness (e.g. signs/drills, knowledge, milling behavior, route failures, vertical evacuation).

- **Hazus**: Estimates the damage to a "typical" building type (e.g. a wood-frame structure)
 - We can define building damage/losses well
 - We can define the permanent resident population pretty well
 - Problem is estimating the non-permanent population (scenarios)

Population Modeling

> A "2 AM" scenario where most people are in a residential structure (including tents, RVs, boats etc.)

We differentiate between "permanent" residents versus "temporary" visitors. Why?

- Oregon coast is a hub for recreational activities (lots of visitors). Hotels, motels, vacation rentals, campgrounds located close to the ocean and hence the tsunami hazard.
- Visitors largely ignorant of the hazard
- Potential of underestimating casualties
- Communities need these data for mass care planning

Also, differentiates between <65 years & > 65 years

Casualty Modeling

Populate buildings
with people
(summertime
weekend,
wintertime midweek)

Calculate
"Distance to Safety"
for each building's
occupants
("Beat the Wave")

Run FEMA Hazus Tsunami Casualty Model

Community Profile Sheets

Results - Casualties and Displaced Population

Earthquake deaths are generally low Cascadia tsunami fatalities are high. Estimates based on 3 counties indicate ~4,100 to 13,800 (M) and 8,500 to 32,400 (XXL); larger #s include visitor estimates.

Oregon Office of Emergency Management

Be 2 Weeks Ready

Tsunami Debris Guide

ShakeAlert